统计与数据科学系系列学术报告之四百四十六期

 

时    间:2024年7月19日(周五)16:00-17:00

地    点:史带楼303室

主持人:复旦大学管理学院 统计与数据科学系 沈娟 副教授

报告人:Professor Annie Qu   University of California, Irvine

题   目:Individualized Dynamic Model for Multi-resolutional Data with Application to Mobile Health

摘   要: Mobile health has emerged as a major success in tracking individual health status, due to the popularity and power of smartphones and wearable devices. This has also brought great challenges in handling heterogeneous, multi-resolution data which arise ubiquitously in mobile health due to irregular multivariate measurements collected from individuals. In this paper, we propose an individualized dynamic latent factor model for irregular multi-resolution time series data to interpolate unsampled measurements of time series with low resolution. One major advantage of the proposed method is the capability to integrate multiple irregular time series and multiple subjects by mapping the multi-resolution data to the latent space. In addition, the proposed individualized dynamic latent factor model is applicable to capturing heterogeneous longitudinal information through individualized dynamic latent factors. In theory, we provide the integrated interpolation error bound of the proposed estimator and derive the convergence rate with B-spline approximation methods.  Both the simulation studies and the application to smartwatch data demonstrate the superior performance of the proposed method compared to existing methods.

个人简介:Annie Qu is Chancellor’s Professor, Department of Statistics, University of California, Irvine. She received her Ph.D. in Statistics from the Pennsylvania State University in 1998. Qu’s research focuses on solving fundamental issues regarding structured and unstructured large-scale data and developing cutting-edge statistical methods and theory in machine learning and algorithms for personalized medicine, text mining, recommender systems, medical imaging data, and network data analyses for complex heterogeneous data. The newly developed methods can extract essential and relevant information from large volumes of intensively collected data, such as mobile health data. Her research impacts many fields, including biomedical studies, genomic research, public health research, social and political sciences. Before joining UC Irvine, Dr. Qu was a Data Science Founder Professor of Statistics and the Director of the Illinois Statistics Office at the University of Illinois at Urbana-Champaign. She was awarded the Brad and Karen Smith Professorial Scholar by the College of LAS at UIUC and was a recipient of the NSF Career award from 2004 to 2009. She is a Fellow of the Institute of Mathematical Statistics (IMS), the American Statistical Association, and the American Association for the Advancement of Science. She is also a recipient of IMS Medallion Award and Lecturer in 2024. She serves as Journal of the American Statistical Association Theory and Methods Co-Editor from 2023 to 2025 and as IMS Program Secretary from 2021 to 2027. Qu Lab website: https://faculty.sites.uci.edu/qulab/

 

统计与数据科学系

2024-7-15

 

报名咨询
姓名
不能为空
性别
不能为空
电话
不能为空
城市
不能为空
公司名称
不能为空
现任职务
不能为空
年收入
不能为空
报考意向
不能为空
感兴趣项目
不能为空
立即预约咨询
提交成功
请扫描二维码直接联系我们