统计与数据科学系系列学术报告之三百八十一

时    间:8月3日(周三) 9:30-10:30

地    点:腾讯会议:283-866-584  会议密码:830288

主持人:夏寅 教授

题    目:When Statistics Meets Computing: A Few Interesting Problems and Challenges

报告人:蔡天文 (Tony Cai) 教授

              Department of Statistics & Data Science

              The Wharton School

              University of Pennsylvania

                                              

个人简介:蔡天文 (Tony Cai) 现任美国宾夕法尼亚大学沃顿商学院Daniel H. Silberberg讲席教授及统计与数据科学教授;宾夕法尼亚大学应用数学及计算科学教授;宾夕法尼亚大学医学院生物统计, 流行病学, 及信息学系资深学者。2017-2020年任沃顿商学院副院长. 2006年当选国际数理统计学会会士。2008年获得世界统计学考普斯奖(COPSS Presidents' Award), 2017年当选泛华统计学会(ICSA)主席, 2019年获泛华统计学会杰出成就奖。曾任国际统计学顶尖刊物统计年刊 (Annals of Statistics) 主编,及多个权威学术期刊的编委会成员。

蔡教授的主要研究方向是大数据分析, 包括机器学习、高维统计、大规模统计推断、统计决策论、函数数据分析、非参数函数估计、以及在基因组与金融工程的应用。

 

摘     要:In the conventional statistical framework, the goal is to develop optimality theory and optimal statistical procedures, where the optimality is understood with respect to the sample size and parameter space. However, in many contemporary applications, nonstatistical concerns such as computational, communication, and privacy constraints associated with the statistical procedures come to the forefront. A fundamental question in Data Science is: How to make optimal statistical inference under these nonstatistical constraints?

In this talk, we discuss some recent advances on differentially private learning, distributed learning under communication constraints, and interplay between statistical accuracy and computational efficiency in a few specific settings. The results show some interesting and novel phenomena and point to directions that are worthy further investigation.

  统计与数据科学系

2022-7-26

 

 

报名咨询
姓名
不能为空
性别
不能为空
电话
不能为空
城市
不能为空
公司名称
不能为空
现任职务
不能为空
年收入
不能为空
报考意向
不能为空
感兴趣项目
不能为空
立即预约咨询
提交成功
请扫描二维码直接联系我们